
What microbes are found in watermelon (Citrullus lanatus) flowers and seeds?

Background Results Conclusions

Methods

• Seed microbes contribute to young plant health (1) and microbial 
community formation (2-3). 

• Floral stigmas are a potential source of microbes for seeds (4). 
• The overlap of stigma and seed microbes is understudied (5).
• Watermelon (Citrullus lanatus) is a good model plant because of its large 

flowers and seeds (6), and it has yet to be surveyed for microbes in detail 
(7). 

• Research questions:
• Which microbes are shared between stigmas and seeds in 

watermelon (Citrullus lanatus)?
• Do these microbial communities vary between plant tissues and 

fields?
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• Collect floral stigmas and seeds from 
two fields (Poundstone and Tule)

• Isolate bacteria and fungi from stigmas 
and seeds in culture

• Extract and amplify microbial DNA 
from cultures for Sanger sequencing

• Identify microbes by querying Sanger 
sequences against DNA databases

• Describe microbial community 
composition 
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• Test which microbes in our culture collection move 
from flowers to seeds in inoculation experiments.

• Test for antagonistic interactions between Bacillus and 
watermelon seed pathogens in culture.

• Test if seed inoculation with our culture collection 
affects seed/seedling survival.
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Figure 1. Taxonomic composition of culturable bacterial (A) and fungal (B) communities of C. lanatus flowers and seeds. Relative abundance was calculated as the 
number of isolated identified to a particular genus over the total number of isolates from that tissue*field source. 

20% of stigma bacteria (Fig. 1A) and 77.8% of stigma fungi (Fig. 1B) were also found in 
seeds. Bacterial richness did not vary by plant tissue (ANOVA; F=1.83, p=0.186) or 
source field (ANOVA; F=1.07, p=0.309), but fungal richness was higher in stigmas than 
seeds (ANOVA; F=6.36, p=0.0172). 

• The most common microbes found across plant tissues 
and fields were Bacillus and Fusarium, which have 
been found in seeds of other plants (6-8). 

• There was lower microbial presence and richness in 
seeds compared to flowers, which is consistent with 
previous research in other plants (6) and aligned with 
the Primary Symbiont Hypothesis (9). 

• There was some variation in microbial community 
richness and composition between fields, which could 
be due to crop variety, environmental conditions or 
both. 

Figure 2. Bacterial (A) and fungal (B) isolation frequencies from seeds in each field. Isolation frequency was calculated as the number of seeds (pooled by fruit 
slice) that had a microbe over the total number of fruit slices.  
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Microbial isolation frequencies from seeds were very low, and there was no significant 
difference in bacterial (Fig. 2A; T-test: t=-0.017, p=0.87) and fungal (Fig. 2B; T-test: t=-
0.67, p=0.53) frequencies between source fields. 

(A) (B)

−1

0

1

−146.5 −146.0 −145.5 −145.0
NMDS1

NM
DS

2 Field
Poundstone_PB1148
Tule_PB115

−4.5

−4.0

−3.5

−3.0

−358.5 −358.0 −357.5 −357.0
NMDS1

NM
DS

2 Field
Poundstone_PB1148
Tule_PB115

Bacterial communities varied by field (Fig. 3A; PerMANOVA: F=2.99, p=0.022) and plant tissue (Fig. 
3A; PerMANOVA: F=4.58, p=0.003), and fungal communities also varied by field (Fig. 3B; 
PerMANOVA: F=7.52, p=0.001).   

Figure 3. Non-metric dimensional scaling (NMDS) ordination of bacterial (A) and fungal (B) communities grouped by field and tissue. The ordination was 
calculated from a Jaccard (i.e., presence/absence) dissimilarity matrix of bacterial and fungal communities from flowers and seeds. Points that are closer together 
represent communities that are similar to each other, while points that are far apart represent communities that are different from each other.    
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